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and refinement was usually complete after ten to
fifteen cyecles.

The refined values of the parameters compared well
with the Rossmann programme values, except for
the effective atomic numbers, which were uniformly
smaller than indicated by the Rossmann programme.
The Hart h0! values were used in the 2 A Fourier
synthesis, although there may be some question
remaining about the proper Z values to use, as
evidenced by negative regions in the myoglobin
Fourier synthesis at the three heavy-atom sites and
some blurring of detail in the immediate neighbour-
hood. This problem is currently being investigated.

Thanks are due to Dr R. G. Hart, whose heavy-atom
refinement programme proved invaluable, and to Dr
M. G. Rossmann, whose least-squares refinement pro-
vided an independent check on the parameters. We
should also like to express our appreciation to Miss
Mary Pinkerton, whose assistance was invaluable at
all stages of the work.
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The Single Isomorphous Replacement Method

By D. M. Brow AND MicHAEL G. RossMaNN
Medical Research Council Unit for Molecular Biology, Cavendish Laboratory, Cambridge, England

(Recetved 8 September 1960 and in revised form 31 October 1960)

Despite the phase ambiguity which arises when one isomorphous pair is used to determine phases
in a non-centrosymmetric structure, a single pair of compounds can be used to give an interpretable
Fourier synthesis. Two conditions must be satisfied: the replacing atoms must themselves form
a non-centrosymmetric array, and a sufficient number of terms must be available.

The method has been applied to the crystalline proteins haemoglobin and myoglobin. Examples
are given which show the improvements which can be made by the use of weighting functions and

by the introduction of anomalous-dispersion data.

1. Introduction

The isomorphous-replacement method, when applied
in its conventional form to a non-centrosymmetric
structure, leads to an ambiguous result for the phase
angle (Bokhoven et al., 1951). A general method of
removing the ambiguity is to employ a series of com-
pounds with isomorphous replacements at different
sites, and this method has been used successfully with
the proteins myoglobin and haemoglobin (Kendrew
et al., 1960; Perutz et al., 1960). However, the prepara-
tion of suitable isomorphous protein derivatives has
been a matter of great difficulty, and is likely to
remain the most time-consuming step in a protein
structure determination. It is therefore important to
find methods which use the minimum number of iso-
morphous derivatives.

Rogers (1951) suggested a procedure applicable

when only one isomorphous pair is available. Although
in the form proposed it only applies to different atoms
substituting at the same site, it may readily be
generalized. A synthesis is calculated in which each
term is given the phase of the scattering of the re-
placing electrons, with a sign chosen according as the
intensity is increased or decreased by the replacement.
When the replacing electrons form a non-centro-
symmetric arrangement, this synthesis tends to be
similar to the electron-density function, but with
background superimposed. Rogers’ function has the
unfortunate property of giving strong weight to terms
where the isomorphous replacement has little effect
on the intensity.

Kartha & Ramachandran (1955) showed how the
minimum function (Buerger, 1951) applied to the
difference Patterson could in principle reveal a non-
centrosymmetric structure under the same circum-
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stances. Ramachandran & Raman (1959), in attempt-
ing to find a ‘reciprocal space’ method analogous to
the ‘vector space’ method, proposed several functions
with properties similar to that of Rogers (1951). The
same limitations on heavy-atom position were as-
sumed, but the generalization is straightforward.
One of these functions, f,, so generalized, is essen-
tially the one now proposed by us, arrived at on quite
independent grounds.

Recently an organic structure has been solved by
application of this method (Kartha, private com-
munication, 1960).*

2. The method

The fundamental equation of the isomorphous-
replacement method is

Fo=F;+1i2, (1)

where F;, Fs are the structure factors of two iso-
morphous compounds, and f;s the calculated structure
factor of the scattering matter in structure 2 not
present in structure 1.

Neglecting error, a single pair of isomorphous com.
pounds gives two possible solutions for the structure
factor F; in (1), which may be called F, and F»
(see Fig. 1). In the absence of other information the
two solutions are equally probable. It has been shown
by Blow & Crick (1959), that the best one can do
in such a case is to use the mid-point of the two,
namely §=1(Fs.+Fy), as the structure factor in a
Fourier synthesis.

The argument which shows that the true structure
should be obtainable by application of the minimum
function to the difference Patterson (Kartha &
Ramachandran, 1955) is based on perfect resolution
and point atoms. In the next section we consider the
conditions required for the method to work in practice.
In section 4, we describe in detail its application to
protein structures and demonstrate the effect of
certain refinements. Section 5 deals with the combina-
tion of these results with anomalous scattering data.

3. The reciprocal space argument

Any experimental method for the determination of
structure factors may be considered to lead to a result

F.., which differs from the true result F by an error €:
Fexp = F + €. (2)

Thus in the non-centrosymmetric case, most of the
error will arise from uncertainty about the phase.
If the F..p are now used to calculate a Fourier
transform, the result may be thought of as the true
one, with the addition of the transform of the e.

* Note added in proof.— Kartha (1961) has published a
paper presenting the same fundamental idea as is expressed
in § 2, together with an example from an imaginary structure.
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As the € are errors, let it be assumed for the time
being that they have random phase.

Consider the effect of increasing the number of
terms, N, by increasing the resolution. For simplicity,
assume the structure to consist of n point atoms,
distributed at random in the space group P1 according
to the postulates of Wilson statistics (1949), so that

the mean |F|2=nf? remains constant as resolution is

increased. Assume, further, that |€|2 remains constant.
If V is the unit-cell volume, the peak heights at the
atomic peaks will be Nf/V, and thus increase propor-
tionately to N. The background due to error increases,
as in the usual random-walk problem, according to
the sum of squares, so that its r.m.s. value will be
(N|e2)}/V, increasing proportionately to J/N. (Series-
termination effects are irrelevant to the argument.)
We thus have

peak/background contrast= /(N )f/(le—lz)i‘. (3)

(If a form factor is introduced which applies equally
to both F and ¢, the terms at higher resolution are
associated with weaker intensities. The peak/back-
ground ratio does not then increase so rapidly as N
increases, and finally the ratio converges to a constant
values as the |F|’s become negligible.)

These ideas may now be applied to the single
isomorphous-replacement method (Fig.1). Suppose

Fig. 1. A single isomorphous replacement in the general
non-centrosymmetric case, showing the significance of the
vector .

that Fy is the correct value for the structure factor.
Then using § in the Fourier summation may be
thought of as adding an error term g= —n to this term,
where 1= 4(F, —Fp). The same is true of all the terms:
they consist of ‘true’ components, which will add
coherently to give point peaks of height Nf/V as
before; and in addition ‘error’ terms €= 41 which
may be assumed to have random phase. nj=|F| sin «
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(Fig. 1), so that |—e|—2=%]T[2, where we have averaged
over all values of &. Using the result |F|2=nf?, this gives
|e|2 = nf2, which may be substituted into equation (3)
to give

peak/background contrast= (2N n)d.

Thus it is clear that in the ideal case of point atoms,
the contrast may be made as large as we please by
increasing V. This corresponds to the ideally accurate
superposition procedure discussed by Kartha &
Ramachandran (1955).

In normal organic structures there are about 20 As
per atom (neglecting hydrogen atoms), and it can be
shown to follow that for three-dimensional data
N/n ~ 35/R®, where R is the resolution in A. Thus
for organic structures peak/background contrast
~ 84 R~%2, so that a just-acceptable contrast of 3
could be attained by using a resolution of about 2 A.

We must now review the assumptions on which this
result rests, and consider their validity under various
conditions. First, we have assumed that the number
of reflexions, N, is sufficient for various statistical
assumptions to be reasonable. This is a good assump-
tion for all structures to which isomorphous replace-
ment is likely to be applied. Even for z=10 non-
hydrogen atoms, the required resolution demands
about 45 reflexions, which would make the statistical
predictions reasonably accurate. The assumption of
point atoms is less justified. At 2 A the unitary scat-
tering factor of carbon has fallen to 0-43 and this
would reduce the contrast considerably below the
predicted level. In proteins,crystal imperfection causes
a much more rapid decay of scattered intensity with
sin 6, and at 2 A the contrast would have approached
its limit as the intensities fall towards zero. In both
these cases we are, however, justified in sharpening
the data, since the inherent errors of the method are
much more important than the experimental errors
which would be magnified by sharpening.

Proteins gain an advantage over the simple theory
because the assumption of a Wilsonian distribution
of atoms in the structure is not optimistic enough.
This arises, at comparatively high resolutions, because
a part of the unit cell is inaccessible to the rigid
molecule and is filled with a non-crystalline salt-water
mixture. Thus, for myoglobin at 2 A, N=9600 re-
flexions for n=about 1200 atoms and hence leads to
a peak/background contrast of 4 instead of 3, as might
be expected for a simple organic structure.

An advantage arises also at much lower resolution
for the x-proteins, because the arrangement of the
polypeptide backbone into tightly packed helices gives
rise to a contrast much greater than that expected by
Wilson statistics. Thus, at 6 A resolution, the x-helix
shows a contrast of about 0-7 e.A-3 over the sur-
rounding side chains, while the expected background

due to error is (—%N|—F-|_2)‘é which for haemoglobin is
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about 0-22 e.A-3, giving a just acceptable contrast
of 3. .

Finally the assumption that the phase of ) is random
must be considered. The effect of a non-random phase
distribution is seen most clearly by reference to the
case where the array of replacing atoms is centro-
symmetric. In this case § is always real, n always
imaginary, and the effect of the errors is to generate
the mirror image of the structure as well as the re-
quired structure. It is clear that, for any simple
distribution of replacing atoms, there will be points
corresponding to partial centres of symmetry. If,
for instance, there are four atoms in the unit cell,
forming a non-centrosymmetric array, there will be
a point midway between any two atoms which is a
partial centre of symmetry. If this point is taken as
origin, the contribution of two of the four atoms to
the structure factor fi2 will always be real. fiz will
usually have larger real parts than imaginary parts,
and the same is true of . Thus the single isomorphous
replacement method will tend to generate a weak
image of the structure by inversion through each
partial centre.

Patterson (1949) showed that a Fourier transform
with coefficients

f2=q2— b2 2iab

provides a map of the ‘centrosymmetricness’ of the
structure obtained by Fourier transformation of f.
This function has been called the Patterson function
of the second kind, to distinguish it from the more
familiar function with coefficients [f]2. It may be
shown that the single isomorphous-replacement method
results in the convolution of the true structure with
a centrosymmetricness map of the replacing atoms,
very similar to the Patterson function of the second
kind. A general method of deconvolution has not yet
been found. We believe this to be the most serious
difficulty of the method in its application to proteins,
and, in the case where there are four equal replacing
atoms per unit cell, it may give rise to images half as
strong as the true structure.

It may be pointed out that exactly the same
difficulty arises with the ‘heavy-atom’ method of
structure determination in the non-centrosymmetric
case.

To summarize the arguments of the last few para-
graphs, in the ideal case of point atoms the method
would work well if the resolution is taken beyond the
distance between the atoms. For real organic structures
it is much more than sufficient to go to the limit of
the copper sphere in data collection. For proteins,
the special features of the structures cause the method
to be applicable (with sharpening) at the limited
resolution available, and in structures containing
«-helices it is also applicable at about 6 A resolution.
A major difficulty in all of these applications is the
appearance of weaker, spurious images.
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4. Straightforward application of the single
isomorphous replacement method

Referring to Fig. 1, it is clear that § has the phase
of fi2 and magnitude ¥, cos x, where « is given by

Fo2=F124 |f12|2+2F|f12] cos & .
Writing fis=a+1:b and §=4+iB, it follows that

A=|8|a/|fi2], B=[Eb/|fi2| , (4)
where
[§] = [(F22 — F12— |f12]2) /2[f12] ,

with the exceptions given below [(5)]. In practice,
error will sometimes prohibit construction of a closed
triangle with sides Fi, Fz, |fi2], and in this case the
best that can be done is to give & the magnitude of
F,. The full conditions are:

(a) If lf12|<Fl_F29 l§l=—F1’ (50’)
() if [fio]<Fe—F1, [f=+F1, (50)
(c) if |fo|>F1+Fe, |E|=—F:. (5¢)

The ff, function (Ramachandran & Raman, 1959)
provides the same weighting scheme, except that no
special provision is made when the above inequalities
apply. They become especially important when |fiz]
is small, and in this case the function of Rogers (1951)
is also seriously inadequate. A more consistent way
of dealing with this case is described below.

We used the data of Perutz et al. (1960) from a
haemoglobin compound containing dimercury acetate
and mercury acetate (‘DMA+HgAce') to give Fo,
a and b; the F; were taken from the unsubstituted
haemoglobin data of Perutz et al. The ‘DMA + HgAcy’
compound contains two independent heavy-atom sites
in the C2 unit cell. Substitution appears to be in-
complete at both sites, but the DMA site has about

%sinﬂ
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1-9 times as much mercury as the HgAcs. The available
data comprised 1074 independent reflexions, going out
to a spacing of 5-8 A, and at this resolution the two
mercury atoms of DMA are not resolved, but appear
as an elongated peak. Full details about these com-
pounds are to be published elsewhere (Cullis ef al.,
1961).

Fig. 2(a) shows one section from the resulting
3-dimensional Fourier synthesis. This section includes
one of the two iron atoms in the asymmetric unit
of the haemoglobin molecule, and the comparable
section calculated from seven isomorphous compounds
by Perutz et al. (1960) is given for comparison
(Fig. 2()).

The agreement is striking, but obviously shows room
for improvement. Our first thought was to reduce the
effect of reflexions in which |fis| is small compared
to experimental error. When this happens one of the
special cases (5a) or (5b) will usually apply, and the
equations give § the full magnitude of Fi, although
in fact we have very little knowledge about the phase
angle, and it would be more correct to omit the re-
flexion. It was therefore decided to use the weighting
functions proposed by Blow & Crick (1959), which
takes care of cases of this sort. Instead of |§| in equa-
tion (4) we use a function |§'| defined by

g cos & exp {—¢&2/2E2}dx
§|=F=

w ) (6)
S exp {— ¢?/2E%}dw
0

where

e=Fo—(F12+ |f12]2 4 2F1|fi2|cos &)}

and F is an estimate of the total r.m.s. error in the
observed and calculated structure factors. £ was taken
to be (504 0-05F,) e./unit cell for the calculations on

AN L

Nio

Fig. 2. (@) The section y=11/32 from the synthesis calculated for haemoglobin using the structure factors § from equations
(4) and (5), based on a single isomorphous pair, (b) The corresponding section calculated from a series of seven isomorphous
derivatives by Perutz et al. (1960). (c) The same section from the haemoglobin synthesis using structure factors § from (4)

and (6).
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(b)

Fig. 3. (@) The haem section of the myoglobin molecule, calculated by using structure factors & from equations (4) and (6),
based on a single isomorphous pair and sharpened. (b) The same section, calculated from a series of five isomorphous deriv-
atives by Kendrew et al. (1960), using the same sharpening-factor.

haemoglobin, and 20 e./unit cell for myoglobin. The
integrations were done numerically by summation at
10° intervals of &, « =0° and & = 180° being given half
weight. In Fig. 2(c), the result for the same section
of the haemoglobin Fourier synthesis is shown.

Fig. 3(a) shows a small section of the myoglobin
synthesis which includes the porphyrin-ring system of
the haem group calculated by the same method. In
this calculation 9600 independent reflexions are in-
cluded, going out to a spacing of 2 A. The structure
factors of the mercury diammine derivative (‘HgAms,')
of myoglobin were taken as i, and of the p-chloro
mercuribenzene sulphonic acid derivative (‘PCMS’)
as Fa. Thus f;2 was the calculated structure factor of
the PCMS mercury atom minus that of the HgAms:
mercury atom. This procedure was needed to obtain
a non-centrosymmetric arrangement of scattering
matter for the replacing atoms in the P2; unit cell.
Although two heavy-atom derivatives have been used
there is, of course, still only one isomorphous pair.
The myoglobin structure factors were calculated
according to equation (6) and sharpened by the factor
exp {1'5 (sin 6/1)2}, the same as was used in the
calculation of Kendrew et al. (1960). The same section
calculated from their series of five isomorphous com-
pounds, is shown in Fig. 3(b).

The “fit’ of the known shape of the haem group to
the results from single isomorphous replacement was
nearly as good as in the multiple isomorphous-replace-
ment method. In the case of haemoglobin, the agree-
raent was good enough to encourage us to plot out the
whole three-dimensional synthesis. From the single
isomorphous-replacement results it was possible to
follow the two chains of high electron density, cor-

AC 14—177

responding to the «-helix backbone of the protein,
throughout almost all their length. There were a few
branch points, where the peaks from one chain
coalesce with a neighbouring one, and one or two
stretches where the image of the «-helix faded near
to the background level. Without prior knowledge of
the structure, most of the «-helix would have been
correctly interpreted, but there would have been a
few ambiguities which are adequately removed by the
multiple isomorphous-replacement method. One puzz-
ling feature was that the iron atoms at the centre of
the haem groups never came much above the level of
the polypeptide chains, while in the multiple iso-
morphous-replacement results at the same resolution
they show about double the density.

5. The combination of the single isomorphous-
replacement method with anomalous-dispersion
data

Although this is as far as we have been able to take the
single isomorphous-replacement technique, we realize
that in practice there would be other important
information available, which one ought not to neglect.
This is the effect of anomalous scattering by the heavy
replacing atoms. Bijvoet (1954) pointed out that this
effect could be used to solve the ambiguity of the
isomorphous-replacement method. The suggestion has
been put into practice by several authors, notably
Ramachandran & Raman (1956), who used anomalous
scattering and a single isomorphous replacement to
verify the structure of r-ephedrine hydrochloride.
Our primary concern is with the application of these
techniques to protein structures, and experimental
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accuracy is not yet sufficient for the marginally small
changes due to anomalous scattering to be measured
with a high degree of certainty. For this reason it is
particularly important that proper weighting functions
should be used. Although this question has been
discussed by Blow (1958), a more simple and elegant
way of calculating the weights has now been developed.

This method consists of taking the data for 2kl and
REl separately throughout, so that instead of the two
intersecting circles of Fig. 2, there are now, in fact,
three intersecting circles of radius Fi(hkl), Fa(hkl),
Fo(REl). (If there are also anomalous effects in the Fj,
these can be allowed for by treating Fi(hkl) and
Fy(REl) separately.)

Fig. 4. The anomalous scattering effect generates two different
triangles, and eliminates the ambiguity. The + superscript
indicates structure factors for the reflexion hkl; those with
a — indicate the complex conjugates of structure factors
for the reflexion AkL.

Fig. 4 shows the data for Akl and 2%, plotted in the
manner of Fig. 2, the REl structure factors being
plotted as the complex conjugates. For brevity, the
superscripts + and — are used to refer to Zkl and Rkl
We denote flz(kkl) by f12'+7:f12” and flz*(TLEZ) by
fio’ —if12”’. There are now two distinct triangles, giving
two values of &:

g+ =Fo+ —[F1*2+ |f122+ 2F1+|f1o] cos (x+ 6)]2
and
g~=Fo— [F1—2 -+ [f1212+2F1‘[f121 COS ((X— 6)]*,

THE SINGLE ISOMORPHOUS REPLACEMENT METHOD

where tan d=|fi2"’|/|fi2’|. In this work we assumed
|F1*}=|F1~|. In Fig. 4 the symmetry of the diagram
about the line of fis is now lost, and in addition to
the term & parallel to this line, there is a contribution
in the perpendicular direction. In place of (6) we have

to use
2n

e exp {— (e¥2+ ¢2)/2E2%}d
81 +iln"| =F1 5 (7)
S exp {—(e*2+ &72)/2E2} do

0

(4) is replaced by
A=(§"la—In"1b)/ifre’|; B=(|§"[b+n"[a)/Ifr'] , (8)

where fi'=a-+3b .

A complete three-dimensional, 58 A resolution
Fourier synthesis of haemoglobin was calculated from
the anomalous dispersion data of the ‘4HgCl.’ compound
together with the unsubstituted compound, according
to expression (8). The ‘4HgCly’ compound contains
roughly one mercury atom at each of the two inde-
pendent sites per asymmetric unit. The synthesis was
first calculated using anomalous-scattering data only
from those reflexions where a ‘significant’ anomalous
scattering effect was observed, namely if

|(Fa*)2— (Fa)2| > 0-05{(Fa+)2+ (F2-)2} .

The 256 reflexions which gave such large anomalous
effects produced a maximum of 5% change in the
density. The calculation was therefore repeated using
the procedure described above for every reflexion,
whether or not the departure from Friedel’s Law
could be regarded as significant. The total effect of
all these contributions produced a maximum change
of 209% in the density. This is a striking example of
the way in which a large number of contributions,
each in itself of little significance, can result in im-
portant effects when combined as in a Fourier trans-
form.

A model of the asymmetric unit (which contains
two polypeptide chains) was built by cutting out the
density shapes above a chosen level. The final model
thus represents a solid whose density is higher than the
surrounding space. This model is compared with a
model built in a similar manner, using the results of
seven isomorphous replacements, by Perutz ef al.
(1960), in Fig. 5.

Another problem needs to be discussed here. In the
initial allocation of co-ordinates to the heavy atoms,
an arbitrary choice has to be made about their absolute
configuration, while the reciprocal lattice is conven-
tionally indexed on a right-handed system. These two
choices may or may not be consistent, and an in-
consistent choice corresponds to reversing the sign of
the anomalous dispersion: that is, the sign of [’}
in (8). The proper way to proceed is to calculate
Fourier syntheses from (7) in two parts. The first
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Fig. 5. (a) A model of one hali haemoglobin molecule (the asymmetric unit) built from a Fourier synthesis calculated from
equation (7) and (8) using a single isomorphous pair. (b) An anologous model from the data ef Perutz et al. (1960) using a

series of seven isomorphous compounds.

(corresponding to the single isomorphous-replacement
method alone, and dependent only on the choice of
the configuration of the heavy atoms) uses structure
factors

§'=18"|(a+1b)/|f12];

the second corresponds to the anomalous-scattering
method alone, using

n"=M"[(=b+1ia)/|fie] .

The comparative weakness of the anomalous-scattering
method will normally make the n'" Fourier weaker
than the §”, but there should be a significant correla-
tion between them, under the conditions in which the
single isomorphous-replacement method is applicable.
The correlation will be either positive or negative,
and will indicate whether the syntheses need to be
added or subtracted, in order to combine the two
methods. A negative correlation will indicate that the
wrong enantiomorph of the heavy atoms was chosen,
and that the correct structure will be the mirror image
of the synthesis obtained by using structure factors
(&"=n").

It may be noted that the n" synthesis is closely
analogous to the straightforward single isomorphous-
replacement synthesis, and is of use in the study of
somewhat simpler heavy-atom compounds when no
isomorphous compound is available. It can be used
when the anomalous scatterers form a non-centro-

symmetric arrangement, as well as when they are
centrosymmetrically arranged (Raman, 1959).

Although in the study of non-centrosymmetric
structures by the isomorphous replacement method
a series of three or more compounds is a desirable
asset, it is clear that in principle there is no stringent
requirement for more than two. A single isomorphous
pair may be expected to give a considerable amount
of useful information, provided the replacing atoms
are heavy enough and arranged in a non-centro-
symmetric manner.

The calculations described in this paper were made
possible by the free access to their unpublished data
granted us by Dr M. F. Perutz and Dr .J. C. Kendrew.
We also wish to thank them for allowing us to publish
some of their results here, for comparison with our
own. A great deal of computation was involved, for
which we must thank the Unit computing staff, and
the Director of the University Mathematical Labora-
tory for the use of EDSAC 2. Mrs Margaret Allen
performed the formidable task of extracting the
anomalous-scattering data from the original lists of
photographic intensities.

We are grateful to Dr Aaron Klug for a stimulating
discussion on the centro-symmetry problem, and Dr
W. Cochran for looking at some of our theory and for
drawing our attention to the Patterson function of the
second kind. The concept of the ‘contrast’ was intro-
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duced to us some years ago by Dr F.H.C. Crick.
The referee made some very useful comments.
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Donnees christallographiques sur l'anthraquinone 1-4 et sur quelques derives substitues.
Par Mm. M. ArzeEauMe, R.Darrouy et J. Housty, Laboratoire de Minéralogie et de Rayons X, Faculté des

Sctences de Bordeauz, France

(Regu le 21 avril 1961)

Anthraquinone 1-4 C14HgO>

L’anthraquinone 1-4 se présente sous deux formes suivant
le solvant de cristallisation.

Par mise en solution dans le benzéne, on obtient de
belles aiguilles rouges, allongées suivant [001].

Les parameétres de la maille sont les suivants:

a=13,83, b=9,65, ¢c=17,35 A; f=96°.

Ce cristal est de symétrie monoclinique, et la maille
contient 4 molécules. Densité calculée d=1,41 g.cm.=3.
Groupe spatial P2/m.

Par mise en solution dans I'acétate d’éthyle, on obtient
de fines aiguilles jaunes, allongées suivant [010].

La maille monoclinique & pour paramétres:

@ =8,40 + 0,01, b=5,93 +0,01, ¢=19,82 +0,02 A&;
B=99°+30".

Nombre de molécules par maille: 4.
Densité calculée: 1,52 g.cm.=3.
Groupe spatial: P2,/c.

Chloro 2-anthraquinone 1-4

La Chloro 2-anthraquinone 1-4 cristallise dans le systéme
orthorhombique sous forme de plaquettes jaunes allongées
suivant la direction [001].

La maille cristalline est caractérisée par les paramétres
suivants:

a=21,74 +0,05, b=5,80+0,02, ¢=8,74+0,02 A .

Densité calculée: 1,32 g.cm.3,
Nombre de molécules dans la maille: 4.
Groupe spatial: P2,2,2, ou P2,2,2.

Dichloro 2-3 anthraquinone 1-4

Ce composé se présente sous forme de plaquettes jaunes
allongées suivant la direction [010].
La maille monoclinique posséde les paramétres suivants:

a=22,49 + 0,05, b=8,68 +0,02, ¢=5,88+0,02 4;
B=94°+1°.
Densité calculée: 1,36 g.cm.=3.

Nombre de molécules par maille: 4.
Groupe spatial: P2,/c ou P2/c.

Dibromo 2-3 anthraquinone 1-4

La dibromo 2-3 anthraquinone 1-4 cristallise dans le
systéme monoclinique sous forme de plaquettes brunes.
Paramétres cristallins:
a=20,50 +0,05, b=>5,76+0,02, c=9,48+0,03 &;
B=92°+1°.
Densité calculée: 1,56 g.cm.™5,
Nombre de molécules dans la maille: 4.
Groupe spatial: P2,/c.

Donnees cristallographiques sur la
phenanthrene quinone 9-10

Cristallise sous forme de prismes orangés allongés suivant
la direction [010].

Systéme cristallin: monoclinique.
Parameétre de la maille:
a=12,60+0,03, b=10,44 +0,02, ¢=14,20+0,03 4;
B=92°+1°.
Densité calculée: 1,47 g.cm.=5.
Nombre de molécules par maille: 8.
Groupe spatial: C2/c.



